

Home Search Collections Journals About Contact us My IOPscience

Transport properties of the heavy-fermion superconductor Ce2CoIn8

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys.: Condens. Matter 15 S2175 (http://iopscience.iop.org/0953-8984/15/28/346)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.121 The article was downloaded on 19/05/2010 at 14:17

Please note that terms and conditions apply.

PII: S0953-8984(03)62919-X

Transport properties of the heavy-fermion superconductor Ce₂CoIn₈

Genfu Chen¹, Shigeo Ohara¹, Masato Hedo², Yoshiya Uwatoko² and Isao Sakamoto¹

¹ Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

² The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan

E-mail: sakamoto@elcom.nitech.ac.jp

Received 12 November 2002 Published 4 July 2003 Online at stacks.iop.org/JPhysCM/15/S2175

Abstract

We present experimental results on the magnetic susceptibility, electrical resistivity and Hall coefficient for the normal state of Ce_2CoIn_8 in the temperature range 2–300 K. These results confirmed the heavy-fermion behaviour of Ce_2CoIn_8 . The resistivity shows a linear temperature dependence in the low-temperature range, which develops remarkably with increasing pressure. This suggests that Ce_2CoIn_8 is near the quantum critical point.

1. Introduction

In the past two decades, heavy-fermion superconductors have constituted a subject of intensive research. Recently, Hegger *et al* reported a new pressure-induced heavy-fermion superconductor, CeRhIn₅ [1], which crystallizes with a tetragonal HoCoGa₅ structure [2, 3]. CeRhIn₅, ordering antiferromagnetically below $T_N = 3.8$ K, exhibits superconductivity under pressure P > 1.6 GPa. The isostructural compounds CeTIn₅ with T = Co and Ir have been found to exhibit heavy-fermion superconductivity at 2.3 and 0.4 K, respectively, at ambient pressure [4, 5]. On the other hand, the compounds Ce₂TIn₈ (T = Co, Rh and Ir) crystallize in a Ho₂CoGa₈ structure [2, 3] with one more layer of CeIn₃ along the *c*-axis than CeTIn₅. Ce₂RhIn₈ orders antiferromagnetically at $T_N = 2.8$ K and exhibits superconductivity at $T_c = 2.0$ K under applied pressure [6]. Ce₂IrIn₈ remains in a paramagnetic state down to 50 mK at ambient pressure [7]. Recently, we have succeeded in growing a single crystal of Ce₂CoIn₈ and found that the electronic specific heat coefficient is about 500 mJ K⁻²/mol Ce and that Ce₂CoIn₈ becomes superconducting below 0.4 K [8]. In this paper, we report experimental results on the magnetic and transport properties of Ce₂CoIn₈ in the normal state. We also grew the nonmagnetic reference compound Y₂CoIn₈.

0953-8984/03/282175+04\$30.00 © 2003 IOP Publishing Ltd Printed in the UK S2175

Figure 1. The inverse susceptibility $1/\chi$ of Ce₂CoIn₈ measured from 2 to 300 K in a magnetic field *H* of 0.5 T parallel (circles) or perpendicular (squares) to the *c*-axis.

2. Experimental details

Single crystals of Ce₂CoIn₈ and Y₂CoIn₈ were grown from In flux as described elsewhere [8]. Arc-melted Ce₂Co and Y₂Co ingots were used. The crystals grown were characterized by x-ray diffraction using Cu K α radiation. The lattice parameters obtained for both compounds agree with the reported values [2]. The magnetization was measured by using a SQUID. The resistivity and Hall effect were measured using a standard four-point (or five-point) dc method. Pressure was applied by utilizing a clamp-type piston (WC)–cylinder (Cu–Be) pressure cell with an oil (Daphne 7373) as the transmitting fluid.

3. Results and discussion

Figure 1 shows the inverse susceptibility $1/\chi$ of Ce₂CoIn₈ measured from 2 to 300 K in a magnetic field *H* of 0.5 T parallel and perpendicular to the *c*-axis. The magnetic susceptibility shows an anisotropy, with χ larger for $H \parallel c$ -axis. Above 200 K, the susceptibility follows the Curie–Weiss law and yields the Weiss temperature 3 K (-14 K) and effective moment $\mu_{eff} = 2.3 \ \mu_B (2.2 \ \mu_B)$ for $H \parallel c$ -axis (*a*-axis). The value of μ_{eff} is slightly smaller than that for free Ce³⁺ ions (2.54 μ_B). The deviation from the Curie–Weiss behaviour below 150 K may be attributed to a crystalline-electric-field (CEF) effect. The susceptibility exhibits a weak maximum at about 7 K for both directions, but no anomaly is observed in ρ at this temperature. Note that such a maximum in the susceptibility was also observed for CeRhIn₅ [1].

The temperature dependence of the magnetic resistivity ρ_m of Ce₂CoIn₈ at various pressures is shown in figure 2. ρ_m was obtained by subtracting the resistivity of Y₂CoIn₈ from that of Ce₂CoIn₈, $\rho_m = \rho$ (Ce₂CoIn₈) – ρ (Y₂CoIn₈). With increasing pressure, the curve for $\rho_m(T)$ shifts toward higher temperatures, which is a typical behaviour for Ce-based

Figure 2. The temperature dependence of the magnetic resistivity $\rho_m(T)$ for Ce₂CoIn₈ measured at different pressures. The inset shows the temperature dependence of the resistivity at low temperatures.

heavy-fermion compounds [9]. The inset shows ρ versus T at low temperatures. In the lowest temperature range, the resistivity shows a linear temperature dependence and this can be described by $\rho = \rho_0 + AT$. The values of ρ_0 and A are found to decrease with increasing pressure. This behaviour, a characteristic of non-Fermi-liquid states, is also observed for the normal state of CeCoIn₅ above T_c [10]. Thus we infer that the electronic state of Ce₂CoIn₈ is in the vicinity of the quantum critical point even at ambient pressure.

Figure 3 shows the temperature dependence of the Hall coefficient R_H for Ce₂CoIn₈ and Y₂CoIn₈ measured with the magnetic field (H = 1.0 T) parallel to the *c*-axis. R_H for Ce₂CoIn₈ shows a maximum near $T_m = 40$ K and then decreases sharply with decreasing temperature, while Y₂CoIn₈ has a weak temperature dependence. According to [11], the Hall coefficient for a heavy-fermion material for $T \ge T_m$ can be described by the expression

$$R_H = R_0 + \gamma \rho_m \tilde{\chi} \tag{1}$$

where R_0 is the ordinary Hall constant, $\tilde{\chi}$ is the reduced susceptibility ($\tilde{\chi} = \chi/C$, where *C* is the Curie constant) and γ is a constant. The second term, the anomalous Hall coefficient, arises from skew scattering of conduction electrons by Ce ions. We plotted R_H versus $\rho_m \tilde{\chi}$ in the inset, for the temperature range 60–300 K. The linear dependence, shown by the solid line, gives $R_0 = -4.2 \times 10^{-10} \text{ m}^3/C$ and $\gamma = 0.028 \text{ K T}^{-1}$. Note that the γ -value is close to those of Ce₂Rh (or Ir)In₈ ($\gamma = 0.025 \text{ K T}^{-1}$) [12]. For the lowest-temperature range, it is found that R_H for Ce₂CoIn₈ shows a ρ_m^2 -dependence below 10 K.

In summary, we have succeeded in growing a single crystal of Ce_2CoIn_8 and measured the magnetic and transport properties for the normal state. Ce_2CoIn_8 exhibits characteristics typical of heavy-fermion materials. We speculated that Ce_2CoIn_8 is near the quantum critical point even at ambient pressure.

Figure 3. The temperature dependence of the measured Hall coefficient R_H for Ce₂CoIn₈ and Y₂CoIn₈. The inset shows a plot of R_H versus $\rho_m \tilde{\chi}$.

References

- [1] Hegger H, Petrovic C, Moshopoulou E G, Hundley M F, Sarrao J L, Fisk Z and Thompson J D 2000 Phys. Rev. Lett. 84 4986
- [2] Kalychak Ya M, Zaremba V I, Baranyak V M, Bruskov V A and Zavalij P Yu 1979 Izv. Acad. Nauk SSSR, Met. 1 209
- [3] Moshopoulou E G, Fisk Z, Sarrao J L and Thompson J D 2001 J. Solid State Chem. 158 25
- [4] Petrovic C, Pagliuso PG, Hundley MF, Movshovich R, Sarrao JL, Thompson JD, Fisk Z and Monthoux P 2001 J. Phys.: Condens. Matter 13 L337
- [5] Petrovic C, Movshovich R, Jaime M, Pagliuso P G, Hundley M F, Sarrao J L, Fisk Z and Thompson J D 2001 Europhys. Lett. 53 354
- [6] Nicklas M, Sidorov V A, Borges H A, Pagliuso P G, Petrovic C, Fisk Z, Sarrao J L and Thompson J D 2003 Phys. Rev. B 67 020506(R)
- [7] Thompson J D, Movshovich R, Fisk Z, Bouquet F, Curro N J, Fisher R A, Hammel P C, Hegger H, Hundley M F, Jaime M, Pagliuso P G, Petrovic C, Phillips N E and Sarrao J L 2001 J. Magn. Magn. Mater. 226-230 5
- [8] Chen G F, Ohara S, Hedo M, Uwatoko Y, Saito K, Sorai M and Sakamoto I 2002 J. Phys. Soc. Japan 71 2836
- [9] Kagayama T and Oomi G 1996 J. Phys. Soc. Japan (Suppl.) B 65 5
- [10] Sidorov V A, Nicklas M, Pagliuso P G, Sarrao J L, Bang Y, Balatsky A V and Thompson J D 2002 Phys. Rev.
- Lett. 89 157004 [11] Fert A and Levy P M 1987 Phys. Rev. B 36 1907
- [12] Sakamoto I, Shomi Y and Ohara S 2003 Physica B at press